博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Computability 1: Computational Models
阅读量:5157 次
发布时间:2019-06-13

本文共 2428 字,大约阅读时间需要 8 分钟。

 

1. URM-Computable Functions

  URM is short for Unlimited Register Machine, which is a computation model conceived by Shepherdson and Sturgis.

  The function $f$ is URM-computable iff there exists a program that URM-computes $f$.

 

2. Recursive Functions

  Partially Recursive Functions is a set of computable functions defined by Gödel and Kleene in 1936.

  

  As an example, Ackerman Function defined as follow is a partially recursive function, but not a primitive recursive function.

      $\psi(x)\simeq\begin{cases}n+1 & m=0 \\ \psi(m-1,1) & m>0\wedge n=0 \\ \psi(m-1,\psi(m,n-1)) & m>0\wedge n>0 \end{cases}$

  To prove Ackerman is computable, we take three steps:

  (1) Denumerate sets of 3-tuples such that $(x,y,z)\in S_v$ iff $p_{2^x 3^y 5^z}|v$;

  (2) The following predicate is : $$R(x,y,v) \equiv `((\exists z<v) (x,y,z)\in S_v)\wedge((0,y,z)\in S_v\rightarrow z=y+1))\vee((x+1,0,z)\in S_v\rightarrow(x,1,z)\in S_v)\vee((x+1,y+1,z)\in S_v\rightarrow(\exists u) ((x,u,z)\in S_v\wedge(x+1,y,u)\in S_v))'$$;

  (3) Function $\psi(x,y)=\mu z((x,y,z)\in S_{\mu v R(x,y,v)})$ is computable.

 

   

3. Turing-Computable Functions

  The three fundamental components of a multi-tape Turing Machine are an Alphabet (a finite set of symbols), a finite set of States and a Transfer Function.

  The computation ability of a Turing Machine does not vary with its size of alphabet, its number of tapes, or whether its tapes are unidirectional or bidirectional.

 

  Theorem.  URM-Computable Functions = Partial Recursive Functions = Turing-Computable Functions

  The proof that a partial recursive function must be a URM-computable function is simply an application of with proper constructions.

  To prove a URM-computable function must be a partial recursive function requires the knowledge of  and a conclusion derived from the proof of that  $\phi_e(\vec{x})=(c(e,\vec{x},\mu t(j(e,\vec{x},t)=0)))_1$ is partial recursive.

  By the same token, one can prove that a Turing-computable function must be partially recursive, and any partial recursive function is Turing-computable.

 

4. Church's Thesis

  The intuitively and informally defined class of effectively computable partial functions coincide exactly with the class of URM-computable functions.

 

 

References:

  1. Cutland, Nigel. Computability: an introduction to recursive function theory[M]. Cambridge: Cambridge University Press, 1980

 

转载于:https://www.cnblogs.com/DevinZ/p/4418351.html

你可能感兴趣的文章
springboot jar包运行中获取资源文件
查看>>
基于FPGA实现的高速串行交换模块实现方法研究
查看>>
Java Scala获取所有注解的类信息
查看>>
delphi ,安装插件
查看>>
case when then的用法-leetcode交换工资
查看>>
11.28.cookie
查看>>
BeanShell简介
查看>>
python字符串操作
查看>>
MySQL学习之备份
查看>>
不同程序语言的注释和变量要求
查看>>
语言基础(9):static, extern 和 inline
查看>>
windows linux—unix 跨平台通信集成控制系统
查看>>
【编程练习】复习一下树的遍历
查看>>
邮件和短信验证码
查看>>
(转)Android studio 使用心得(五)—代码混淆和破解apk
查看>>
构建之法阅读笔记03
查看>>
ES5_03_Object扩展
查看>>
Apache-ab 接口性能测试
查看>>
EF 4.1 Code First Walkthrough
查看>>
常用MySQL语法
查看>>